Improved Errors-in-Variables Estimators for Grouped Data
نویسندگان
چکیده
منابع مشابه
Minimum Distance Estimators for Nonparametric Models with Grouped Dependent Variables
This Version: January 2002 This paper develops minimum distance estimators for nonparametric models where the dependent variable is known only to fall in a specified group with observable thresholds, while its true value remains unobserved and possibly censored. Such data arise commonly in major U.S and U.K data sets where, e.g., the thresholds between which earnings fall are observed, but not ...
متن کاملImproved maximum likelihood estimators in a heteroskedastic errors-in-variables model
This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the co...
متن کاملNew M-estimators in semiparametric regression with errors in variables
In the regression model with errors in variables, we observe n i.i.d. copies of (Y, Z) satisfying Y = fθ0(X) + ξ and Z = X + ε involving independent and unobserved random variables X, ξ, ε plus a regression function fθ0, known up to some finite dimensional θ. The common densities of the Xi’s and of the ξi’s are unknown whereas the distribution of ε is completely known. We aim at estimating the ...
متن کامل"_. Properties of Estimators in Errors-in-variables Regression T-udels
In this dissertation, we consider several facets of the "errors-in-variables" problem, the problem of estimating regression parameters when variables are subject to measurement or observation error. We consider a general formulation in which some subset of the variables is subject to such errors while some variables are observed exactly. We consider two general classes of estimates which have a...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Business & Economic Statistics
سال: 2007
ISSN: 0735-0015,1537-2707
DOI: 10.1198/073500106000000189